Gmail shows authentication data to the recipient

Yesterday Gmail rolled out some changes to their interface. One of the changes is that they are now showing end users authentication results in the user screen.
It’s really the next step in email authentication, showing the results to the end user.
So how does Google do this? Google is checking both SPF and DKIM. If mail is authenticated and the authentication matches the from address then they display the email as:
mail from steve to me
If we click on “details” for that message, we find more specific information.
full details of message showing signing domain and spf domainIn this case the mail went through our outgoing mailserver to gmail.
Mailed-by indicates that the message passed SPF and that the IP address is a valid source of mail from wordtothewise.com.
Signed-by shows the domain in the DKIM d=. In this case, we signed with the subdomain dt.wordtothewise.com. That’s what happens when you sign using the domain in the From address (or a subdomain of it).
For a lot of bulk senders, though, their mail is signed using their ESP’s domain instead.  In that case Gmail shows who signed the mail as well as the from address.

And when we click on “details” for that message we see:
3rd party signature detailsThis is an email from a sender using Madmimi as an ESP. Madmimi is handling both the SPF authentication and the DKIM authentication.
As an aside, this particular  sender has a high enough reputation that Gmail is offering me an unsubscribe option in their interface.
Gmail is distinguishing between first party and third party signatures in authentication. If the mail is authenticated, but the authentication appears to be handled by a separate entity, then Gmail is alerting recipients to that fact.
What does this mean for bulk senders?
For senders that are signing with a domain that matches their From: domain, there is no change. Recipients will not see any mention of your ESP in the headers.
However, if you are using an ESP that is signing your mail with a domain they own, then your recipients will see that information displayed in the email interface. If you don’t want this to be displayed by Gmail, then you will need to move to first party signing. Talk to your ESP about this. If they’re unsure of how to manage it, you can point them to DKIM Core for an Email Service Provider.
Gmail blogpost about the changes
Gmail help page about authentication results

Related Posts

DKIM "i=" vs "d=" and Reputation

This really should be part seven of a twelve part series or some such as it deals with an aspect of DKIM that’s really important, but is way down in the details of implementation. (dkim.org is a reasonable place to start for a general overview of DKIM).
There’s an apparently endless thread on the DKIM-SSP spec development mailing list at the moment about the differences between two fields in a DKIM signature that could be used to tie a senders reputation to. Several ESP delivery folks asked me to explain what everyone was talking about, and this post is a first cut at that.
“i=” vs “d=”
There are two possible fields in a DKIM signature that could be used to identify the sender of a message, and so to tie a sender history and reputation record to. They are the so-called “i=” and “d=” field, from the syntax used to include them in the signature.

Read More

What is Two Factor Authentication?

Two factor authentication, or the snappy acronym 2FA, is something that you’re going to be hearing a lot about over the next year or so, both for use by ESP employees (in an attempt to reduce the risks of data theft) and by ESP customers (attempting to reduce the chance of an account being misused to send spam). What is Authentication?
In computer security terms authentication is proving who you are – when you enter a username and a password to access your email account you’re authenticating yourself to the system using a password that only you know.
Authentication (“who you are”) is the most visible part of computer access control, but it’s usually combined with two other A’s – authorization (“what you are allowed to do”) and accounting (“who did what”) to form an access control system.
And what are the two factors?
Two factor authentication means using two independent sources of evidence to demonstrate who you are. The idea behind it is that it means an attacker need to steal two quite different bits of information, with different weaknesses and attack vectors, in order to gain access. This makes the attack scenario much more complex and difficult for an attacker to carry out.
It’s important that the different factors are independent – requiring two passwords doesn’t count as 2FA, as an attack that can get the first password can just as easily get the second password. Generally 2FA requires the user to demonstrate their identity via two out of three broad ways:

Read More

Defending against the hackers of 1995

Passwords are convenient for the end user, but it’s too easy to lose control of them. People share them with other people. People write them down, where they can be read. People send them in email, and that email is easily intercepted. People’s web browsers store the passwords, so they can log in automatically. Worst of all, perhaps, people tend to use the same username and password at many different websites. If just one of those websites is compromised (or even run as a password collecting scam) then those passwords can be used to attack accounts at all of the others.
Two factor authentication that uses an uncopyable physical device (such as a cellphone or a security token) as a second factor mitigates most of these threats very effectively. Weaker two factor authentication using digital certificates is a little easier to misuse (as the user can share the certificate with others, or have it copied without them noticing) but still a lot better than a password.
Security problems solved, then?

Read More